Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

C—H \cdot. N contacts in 4-phenyl-3-(4-pyridyl)-4H-1,2,4-triazole

Liliana Mazur, ${ }^{\text {a }}$ Anna E. Koziol ${ }^{\text {a * }}$ and Bozena ModzelewskaBanachiewicz ${ }^{\text {b }}$

${ }^{\mathrm{a}}$ Faculty of Chemistry, Maria Curie-Sklodowska University, 20031 Lublin, Poland, and ${ }^{\text {b }}$ Faculty of Pharmacy, Medical University, 20081 Lublin, Poland, and, Faculty of Pharmacy, Medical University, 85067 Bydgoszcz, Poland

Correspondence e-mail:
akoziol@hermes.umcs.lublin.pl

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.057$
$w R$ factor $=0.126$
Data-to-parameter ratio $=14.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

The title compound, $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{4}$, is a disubstituted 1,2,4-triazole derivative. The pyridyl and phenyl rings form dihedral angles of 46.7 (3) and $55.9(4)^{\circ}$, respectively, with the central triazole ring. The molecules in the crystal structure form two types of centrosymmetrically related dimers through hydrophobic C $\mathrm{H} \cdots \mathrm{N}$ and $\pi-\pi$ intermolecular interactions.

Comment

Extensive studies have been carried out in recent years on substituted 1,2,4-triazoles. The immense interest in this class of compounds results from their chemical, biological and pharmacological significance. 1,2,4-Triazole and its derivatives are starting materials for the synthesis of many heterocycles (Milcent \& Redeuilh, 1979; Milcent et al., 1983). They are also very useful ligands in coordination chemistry. Some complexes containing 1,2,4-triazole ligands have specific magnetic and optical properties (Kahn \& Martinez, 1998; Groeneveld et al., 1982; Vos et al., 1983; Koningsbruggen et al., 1995, 1998). Apart from their chemical significance, 1,2,4-triazole derivatives have been found to be associated with diverse pharmacological properties, such as anti-inflammatory, antifungal and antiviral (Massa et al., 1992; Mahomed et al., 1993; Mullican et al., 1993). Some of them are also known to exhibit analgesic, anticonvulsant, tranquilizing, antidepressant, anxiolytic (Bradbury \& Rivett, 1991; Sughen \& Yoloye, 1978; Stillings et al., 1986; Kane et al., 1988) or even antitumour activities (Hatheway et al., 1978) and are applied in therapy (e.g. Alprazolam, Estazolam, Triazolam and Adinazolam; Budavari et al., 1996). There are many structures of 1,2,4-triazole derivatives described in the scientific literature, but to date no crystal structure of a simple 3-(4-pyridyl)-1,2,4-triazole derivative, unsubstituted in position C5, has been reported (Cambridge Structural Database, Version 5.25; Allen, 2002). The nature of the substituents and the type of their substitution have a significant impact on the chemical and pharmacological properties of compounds. In view of these important factors, the crystal structure determination of 3-(4-pyridyl)-4-phenyl-4H-1,2,4-triazole, (I), has been undertaken.

(I)

The title molecule (Fig. 1) consists of three aromatic rings, viz. triazole, pyridyl and phenyl, which are each essentially

Received 20 October 2004 Accepted 4 November 2004 Online 13 November 2004

The molecular structure of (I), with the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
The packing arrangement of (I), viewed along the c axis. Dashed lines indicate $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds and $\mathrm{C}-\mathrm{H} \cdots \pi$ contacts.
planar, but are not coplanar. The $\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4 p-\mathrm{C} 3 p$ and $\mathrm{C} 5-\mathrm{N} 4-\mathrm{C} 1 f-\mathrm{C} 2 f$ torsion angles, describing the orientation of the pyridyl and phenyl rings with respect to the 1,2,4-triazole ring, are -130.7 (4) and -121.9 (4) ${ }^{\circ}$, respectively. The dihedral angle between the pyridyl and phenyl planes is $63.8(4)^{\circ}$. The bond lengths and angles in (I) are comparable with those observed in related compounds (Chinnakali et al., 1999; Rogers et al., 1990). The $\mathrm{N} 1=\mathrm{C} 5$ and $\mathrm{N} 2=\mathrm{C} 3$ bonds display double-bond character, with bond distances of 1.304 (4) and 1.318 (3) \AA, respectively, whereas the $\mathrm{N} 4-\mathrm{C} 3$ and $\mathrm{N} 4-\mathrm{C} 5$ bonds have an intermediate character (Table 1).

The molecule of (I) has no H atoms bonded to heteroatoms, and thus the molecular packing is determined by a combination of $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ (Taylor \& Kennard, 1982), $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\pi-\pi$ interactions (Figs. 2 and 3, and Table 2). In the crystal

Packing of the molecules, viewed along the b axis. Dashed lines indicate hydrogen bonds.
structure, the molecules are associated into centrosymmetric hydrogen-bonded dimers of two types. The first type of dimer is formed via a bifurcated $\mathrm{C} 6 f-\mathrm{H} 6 f \cdots \mathrm{~N} 1 / \mathrm{N} 2(1-x, 1-y$, $1-z$) hydrogen bond and is additionally stabilized by $\pi-\pi$ stacking between triazole rings, with a distance of 3.637 (4) \AA between the ring centroids and a perpendicular distance of 3.595 (4) Å. Interactions via $\mathrm{C} 2 f-\mathrm{H} 2 f \cdots \mathrm{~N} 1 p(1-x,-y$, $1-z$) hydrogen bonds and $\pi-\pi$ stacking of pyridyl rings form the second type of dimer. The perpendicular distance between two of these pyridyl rings is 3.480 (4) \AA, while the distance between the centers of the rings is 3.889 (4) \AA. Screw-related molecules have $\mathrm{C} 5 f-\mathrm{H} 5 f \cdots \mathrm{~N} 1 p$ and $\mathrm{C} 6 p-\mathrm{H} 6 p \cdots \mathrm{~N} 1$ short contacts down the b axis (Fig. 3). In addition to these interactions, the crystal structure is also stabilized by $\mathrm{C}-\mathrm{H} \cdots \pi$ contacts involving the $\mathrm{C} 4 f-\mathrm{H} 4 f$ atoms of one molecule and the pyridyl ring of a second molecule translated along the a axis (Fig. 2). The geometry of these contacts is given in Table 2.

Experimental

The title compound, (I), was synthesized by reaction of an N3substituted amidrazone with diethylethoxymethylene malonate as reported by Modzelewska (1991-1992). Crystals were obtained by recrystallization from methanol at room temperature. The melting point (determined on a Boëtius microscope) was 475 K . The orange single crystal selected for X-ray diffraction measurements was a very thin, soft plate.

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{4}$
$M_{r}=222.25$
Monoclinic, $P 2_{1} / n$
$a=9.165$ (2) \AA
$b=12.030(4) \AA$
$c=9.812(4) \AA$
$\beta=98.69$ (3) ${ }^{\circ}$
$V=1069.4$ (6) \AA^{3}
$Z=4$
$D_{x}=1.380 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 58
reflections
$\theta=6-15^{\circ}$
$\mu=0.70 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Plate, orange
$0.54 \times 0.21 \times 0.02 \mathrm{~mm}$

Data collection

Kuma KM-4 four-circle	702 reflections with $I>2 \sigma(I)$
\quad diffractometer	$\theta_{\max }=75.1^{\circ}$
$\omega-2 \theta$ scans	$h=-11 \rightarrow 11$
Absorption correction: numerical	$k=0 \rightarrow 15$
$\quad(K M-4$ Software; Kuma, 1998)	$l=0 \rightarrow 12$
$T_{\min }=0.706, T_{\max }=0.988$	3 standard reflections
2210 measured reflections	every 100 reflections
2210 independent reflections	intensity decay: 3.0%
Refinement	
Refinement on F^{2}	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.057$	H -atom parameters constrained
$w R\left(F^{2}\right)=0.126$	$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.046 P)^{2}\right]$
$S=0.96$	where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
2210 reflections	$(\Delta / \sigma)_{\max }<0.001$
154 parameters	$\Delta \rho_{\max }=0.18 \mathrm{e} \AA^{-3}$
	$\Delta \rho_{\min }=-0.22 \mathrm{e} \AA^{-3}$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{N} 1-\mathrm{C} 5$	$1.304(4)$	$\mathrm{N} 4-\mathrm{C} 5$	$1.360(3)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.404(3)$	$\mathrm{N} 4-\mathrm{C} 1 f$	$1.448(3)$
$\mathrm{N} 2-\mathrm{C} 3$	$1.318(3)$	$\mathrm{N} 1 \mathrm{P}-\mathrm{C} 6 p$	$1.333(4)$
$\mathrm{C} 3-\mathrm{N} 4$	$1.367(3)$	$\mathrm{N} 1 \mathrm{P}-\mathrm{C} 2 p$	$1.338(3)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{N} 2$	$106.1(3)$	$\mathrm{C} 5-\mathrm{N} 4-\mathrm{C} 3$	$104.6(2)$
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{N} 1$	$107.3(2)$	$\mathrm{C} 5-\mathrm{N} 4-\mathrm{C} 1 f$	$125.9(3)$
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{N} 4$	$110.2(3)$	$\mathrm{N} 1-\mathrm{C} 5-\mathrm{N} 4$	$111.9(3)$
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4 p$	$124.3(3)$		
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4 p-\mathrm{C} 3 p$	$-130.7(3)$	$\mathrm{C} 5-\mathrm{N} 4-\mathrm{C} 1 f-\mathrm{C} 2 f$	$-121.9(3)$

Table 2
Hydrogen-bonding geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{~N} 1 p^{\mathrm{i}}$	0.93	2.93	$3.534(4)$	124
$\mathrm{C} 6 f-\mathrm{H} 6 f \cdots \mathrm{~N} 2^{\mathrm{ii}}$	0.93	2.63	$3.486(4)$	154
$\mathrm{C} 6 f-\mathrm{H} 6 f \cdots \mathrm{~N} 1^{\text {ii }}$	0.93	2.96	$3.580(4)$	126
$\mathrm{C} 2 f-\mathrm{H} 2 f \cdots \mathrm{~N} 1 p^{\text {iii }}$	0.93	2.84	$3.563(4)$	136
$\mathrm{C} 5 f-\mathrm{H} 5 f \cdots \mathrm{~N} 1 p^{\text {iv }}$	0.93	2.69	$3.554(4)$	155
$\mathrm{C} 6 p-\mathrm{H} 6 p \cdots \mathrm{~N} 1^{\mathrm{v}}$	0.93	2.72	$3.464(4)$	137
$\mathrm{C} 4 f-\mathrm{H} 4 f \cdots \pi^{\mathrm{vi}}$	0.93	2.94	$3.782(4)$	151

Symmetry codes: (i) $\frac{1}{2}+x, \frac{1}{2}-y, z-\frac{1}{2}$; (ii) $1-x, 1-y, 1-z$; (iii) $1-x,-y, 1-z$; (iv) $\frac{3}{2}-x, \frac{1}{2}+y, \frac{3}{2}-z$; (v) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$; (vi) $1+x, y, z$.

All H atoms were positioned geometrically and a riding model was applied, with a C-H distance of $0.93 \AA$ for the triazole, pyridyl and
phenyl H atoms. The displacement parameters of the H atoms were set at $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: KM-4 Software (Kuma, 1998); cell refinement: KM-4 Software; data reduction: KM-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1990); software used to prepare material for publication: SHELXL97 and enCIFer (Allen et al., 2004).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. \& Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
Bradbury, R. H. \& Rivett, J. E. (1991). J. Med. Chem. 34, 151-157.
Budavari, S., O'Neil, M. J., Smith, A., Heckelman, P. E. \& Kinnearty, J. F. (1996). Editors. The Merck Index, 12th ed., entries 159, 320, 3744 and 9734. New Jersey: Merck and Co. Inc.
Chinnakali, K., Fun, H.-K., Senthilvelan, A., Sriraghavan, K. \& Ramakrishnan, V. T. (1999). Acta Cryst. C55, 1136-1138.
Groeneveld, L. R., Vos, G., Gorter, S. \& Haasnoot, J. G. (1982). Acta Cryst. B38, 2248-2250.
Hatheway, G. J., Hansch, C., Kim, K. H., Milstein, S. R., Schimidt, C. L., Smith, R. N. \& Quinn, F. R. (1978). J. Med. Chem. 21, 563-567.

Kahn, O. \& Martinez, C. J. (1998). Science, 279, 44-48.
Kane, J. M., Dudley, M. W., Sorensen, S. M. \& Miller, F. P. (1988). J. Med. Chem. 31, 1253-1258.
Koningsbruggen, P. J. van, Goubitz, K., Haasnoot, J. G. \& Reedijk, J. (1998). Inorg. Chim. Acta, 268, 37-42.
Koningsbruggen, P. J. van, Haasnoot, J. G., Vreugdenhil, W., Reedijk, J. \& Kahn, O. (1995). Inorg. Chim. Acta, 239, 5-12.
Kuma (1998). KM-4 Software. Version 10.3. Kuma Diffraction, Wrocław, Poland.
Mahomed, E. A., El-Deen, I. M., Ismail, M. M. \& Mahomed, S. M. (1993). Indian J. Chem. Sect. B, 32, 933-937.
Massa, S., Di Santo, R., Retico, A., Artico, M., Simonetti, N., Fabrizi, G. \& Lamba, D. (1992). Eur. J. Med. Chem. 27, 495-502.
Milcent, R. \& Redeuilh, C. (1979). Heterocycl. Chem. 16, 403-407.
Milcent, R., Vicart, P. \& Bure, A. M. (1983). Eur. J. Med. Chem. Chim. Ther. 18, 215-220.
Modzelewska, B. (1991-1992). Ann. UMCS Sec. AA 46/47, 67-72.
Mullican, M. D., Wilson, M. W., Connor, D. T., Kostlan, C. R., Schrier, D. J. \& Dyer, R. D. (1993). J. Med. Chem. 36, 1090-1099.
Rogers, R. D., Park, M. G. \& Kevill, D. N. (1990). Acta Cryst. C46, 2218-2221.
Sheldrick, G. M. (1990). SHELXTL/PC. Users Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stillings, M. R., Welbourn, A. \& Walter, D. S. (1986). J. Med. Chem. 29, 22802284.

Sughen, J. K. \& Yoloye, T. (1978). Pharm. Acta Helv. 58, 64-68.
Taylor, R. \& Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063-5070.
Vos, G., le Febre, R. A., de Graaff, R. A. G., Haasnoot, J. G. \& Reedijk, J. (1983). J. Am. Chem. Soc. 105, 1682-1683.

